
Binghamton

University

CS-220

Spring 2016

Loading Code
Computer Systems Chapter 7.5, 7.8, 7.9

Binghamton

University

CS-220

Spring 2016

gcc –g –o ttt ttt.c

ttt.c

gcc

ttt

Binghamton

University

CS-220

Spring 2016

gcc –g –o ttt ttt.c

ttt.c gcc ttt

ttt.s ttt.o

AssemblerCompiler

Pre-Processor Linker

Binghamton

University

CS-220

Spring 2016

What is in a binary executable file?

• Binary representation of X86 instructions
• “objdump –d ttt” disassembles these and writes them out

• What else is in the binary executable file??

080484ac <main>:
80484ac: 55 push %ebp
80484ad: 89 e5 mov %esp,%ebp
80484af: 83 e4 f0 and $0xfffffff0,%esp
80484b2: 83 ec 20 sub $0x20,%esp
80484b5: e8 1e 00 00 00 call 80484d8 <getString>
80484ba: 88 44 24 1f mov %al,0x1f(%esp)
80484be: 80 7c 24 1f 00 cmpb $0x0,0x1f(%esp)
80484c3: 75 f0 jne 80484b5 <main+0x9>
…

Binary X86

Disassembly

Binghamton

University

CS-220

Spring 2016

What else is in a binary file?

• Information about WHERE in memory the code is placed

• Cross-reference between function name and location in memory

• Information about constants
• Some constants can be literal values in X86 instructions… $12
• Not all constants fit in instructions… “Enter your next move”
• Binary file must contain both the value and location of constants

• Information about global variables
• Where each global variable exists in memory
• What the initial value of the global variable is (if initialized)

• All the debug information created by -g

Binghamton

University

CS-220

Spring 2016

Object Code ELF format

• ELF –Acronym from: Executable and Linkable Format

• First defined in 1983 UNIX “System V”

• Used for many different architectures (very popular)

• In 1996, chosen as standard for X86

• See
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Binghamton

University

CS-220

Spring 2016

ELF File Format

ELF Header

Program Header Table

.text

.rodata

…

.data

Section Header Table (TOC on disk)

Binghamton

University

CS-220

Spring 2016

ELF Header

• “Magic Number” – First 4 bytes identify this as ELF (0x72 + ‘ELF’)

• Information about this file:
• 32/64 bit addresses, big/little endian
• Target operating system and architecture
• relocatable, executable, shared, or core

• Starting Load address

• Program Table Info (loc, size, #entries) for use after load

• Section Table Info (offset, size, #entries) File table of contents

x72 x45 x4C x46

r E L F

Binghamton

University

CS-220

Spring 2016

“Reading” ELF files : objdump

• -f : Interpret ELF header

• -h : List section headers (table of contents)

• -d / -D : Disassemble x86 binary code (.text) segment

• -t/-T : Interpret symbol table

• -s : dump everything in hex
• -j<section> to restrict to a specific section

Binghamton

University

CS-220

Spring 2016

ELF Header Information

>objdump –f ttt

cmd: file format elf32-i386

architecture: i386, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x080483c0

Binghamton

University

CS-220

Spring 2016

Segments or Sections

• Need different sections for different types of data

• Each section has it’s own internal data format

• ELF header points to section table

• Section Table keeps “Section Header” for each segment
• What kind of section is this

• Section type/name

• Section Flags

• Starting location on disk (offset from beginning of the file)

• Size of section

• Location / Alignment in memory for this section

Binghamton

University

CS-220

Spring 2016

objdump –h cmd (dump section headers)

Sections:

Idx Name Size VMA LMA File off Algn

0 .interp 00000013 08048134 08048134 00000134 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

…

13 .text 00000290 080483c0 080483c0 000003c0 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

14 .fini 00000017 08048650 08048650 00000650 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

15 .rodata 00000021 08048668 08048668 00000668 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

…

Binghamton

University

CS-220

Spring 2016

Example extract of Section Table

Index Name Size Addr File Off. Align Flags

…

13 .text x0290 080483c0 x03c0 2**4 CODE,ALLOC,READONLY

14 .fini

15 .rodata x0021 08048668 x0668 2**2 DATA,ALLOC,READONLY

… …

24 .data x0120 08049880 x0880 2**5 DATA,ALLOC…

25 .bss x0120 080499a0 x09a0 2**2 ALLOC

26 .comment x0038 0 x09a0 2**0 … READONLY …

…

Binghamton

University

CS-220

Spring 2016

.text section – x86 binary instructions

Contents of section .text:

80483c0 31ed5e89 e183e4f0 50545268 e0850408 1.^.....PTRh....

80483d0 68f08504 08515668 ac840408 e8bfffff h....QVh........

80483e0 fff49090 90909090 90909090 90909090

80483f0 b8a39904 082da099 040883f8 067702f3 -.......w..

8048400 c3b80000 000085c0 74f55589 e583ec18 t.U.....

8048410 c70424a0 990408ff d0c9c390 8d742600 ..$..........t&.

8048420 b8a09904 082da099 0408c1f8 0289c2c1 -..........

…

Binghamton

University

CS-220

Spring 2016

.text section – x86 binary instructions
Contents of section .text:

80483c0 31ed5e89 e183e4f0 50545268 e0850408 1.^.....PTRh....

80483d0 68f08504 08515668 ac840408 e8bfffff h....QVh........
Disassembly of section .text:

080483c0 <_start>:
80483c0: 31 ed xor %ebp,%ebp
80483c2: 5e pop %esi
80483c3: 89 e1 mov %esp,%ecx
80483c5: 83 e4 f0 and $0xfffffff0,%esp
80483c8: 50 push %eax
80483c9: 54 push %esp
80483ca: 52 push %edx
80483cb: 68 e0 85 04 08 push $0x80485e0
80483d0: 68 f0 85 04 08 push $0x80485f0
80483d5: 51 push %ecx
80483d6: 56 push %esi
80483d7: 68 ac 84 04 08 push $0x80484ac
80483dc: e8 bf ff ff ff call 80483a0 <__libc_start_main@plt>

Binghamton

University

CS-220

Spring 2016

.data –initialized global/static data

Contents of section .data:

8049880 00000000 00000000 00000000 00000000

8049890 00000000 00000000 00000000 00000000

80498a0 48656c6c 6f20576f 726c642e 2e2e2054 Hello World... T

80498b0 68697320 69732061 6e20696e 69746961 his is an initia

80498c0 6c697a65 6420676c 6f62616c 20766172 lized global var

80498d0 6961626c 65207661 6c756500 00000000 iable value.....

…

Binghamton

University

CS-220

Spring 2016

.bss–Size of uninitialized data

• Takes no space in object code!

• “bss” acronym for “Block Storage Start”
• or “Better Save Space”

Idx Name Size VMA LMA File off Algn

25 .bss 00000120 080499a0 080499a0 000009a0 2**5

ALLOC

Binghamton

University

CS-220

Spring 2016

.rodata–Read only data (constants)

Contents of section .rodata:

8048668 03000000 01000200 6e756d20 61726773 num args

8048678 20697320 25640025 73202573 2025730a is %d.%s %s %s.

8048688 00

Binghamton

University

CS-220

Spring 2016

Symbol Table – Name Cross Reference

cmd: file format elf32-i386

SYMBOL TABLE:

08048134 l d .interp 00000000 .interp

08048148 l d .note.ABI-tag 00000000 .note.ABI-tag

…

08048668 g O .rodata 00000004 _fp_hw

080499a0 g *ABS* 00000000 __bss_start

080484ac g F .text 000000d7 main

00000000 w *UND* 00000000 _Jv_RegisterClasses

0804858c g F .text 00000051 utilFunc

00000000 F *UND* 00000000 sprintf@@GLIBC_2.0

080499a0 g O .data 00000000 .hidden __TMC_END__

080499c0 g O .bss 00000080 globalBuffer

Binghamton

University

CS-220

Spring 2016

Symbol Table – Name Cross Reference

Location FLAGS Section Length/Alignment Name

-------- ------- -------------- ---------------- ------------------------

08048134 l d .interp 00000000 .interp

08048148 l d .note.ABI-tag 00000000 .note.ABI-tag

…

08048668 g O .rodata 00000004 _fp_hw

080499a0 g *ABS* 00000000 __bss_start

080484ac g F .text 000000d7 main

00000000 w *UND* 00000000 _Jv_RegisterClasses

0804858c g F .text 00000051 utilFunc

00000000 F *UND* 00000000 sprintf@@GLIBC_2.0

080499a0 g O .data 00000000 .hidden __TMC_END__

080499c0 g O .bss 00000080 globalBuffer

Binghamton

University

CS-220

Spring 2016

Symbol Table Flags

• Col 1: l=local, g=global, !=both, u=unique global, blank=neither

• Col 2: w=weak, blank=strong

• Col 3: C=constructor, blank=ordinary symbol

• Col 4: W=warning, blank=normal

• Col 5: I=indirect ref, i=function for relocation, blank=normal

• Col 6: d=debugging symbol, D=dynamic symbol, blank=normal

• Col 7: F=function, f=file, O=object, blank=normal

Binghamton

University

CS-220

Spring 2016

Loading an ELF file into Memory
Operating System Reserved (kernel) Data

User Stack

Shared Library Region

User Heap (malloc)

Uninitialized globals (.bss)

Initialized globals (.data)

Program Instructions (.text)

Operating System Reserved Low Memory

%esp

%eip

0x08048000

Binghamton

University

CS-220

Spring 2016

Running a command

• Loading the command:
• Finding the binary file in the file system

• Parsing the command line into argc and argv

• Creating a new address space (and process ID) for the command

• Loading a binary file into memory (new address space)

• Executing the command:
• Push argc and argv on the bottom of the stack

• call main

