Binghamton CS-220

University Spring 2016

Loading Code

Computer Systems Chapter 7.5,7.8,7.9

Binghamton CS-220

University Spring 2016

gcc —g —o ttt ttt.c

Binghamton CS-220

University Spring 2016

gcc —g —o ttt ttt.c

Pre-Processor my

Compiler Assembler

\./

Binghamton

CS-220

University

What Is in a binary executable file?

Spring 2016

 Binary representation of X86 instructions

* “objdump -d ttt” disassembles these and writes them out

080484ac <main>:
80484ac:
80484 ad:

80484af:

80484b2:
80484Db5:
80484ba:
80484be:
80484c3:

55

89 e5
83 e4 0
83 ec 20

88 44 24 1f

75 f0
\

e8 1e 00 00 00

80 7c24 100

Binary X86

N

Pa—
push %ebp
mov %esp,%ebp
and $0xfftffff0,%esp
sub $0x20,%esp

call 80484d8 <getString>
mov %al,0x1f(%esp) Y

)

cmpb $0x0,0x1f(%esp)
\'nke 80484b5 <main+0x9y

» What else is in the binary executable file??

Binghamton CS-220

University Spring 2016

What else Is in a binary file?

* Information about WHERE in memory the code is placed
* Cross-reference between function name and location in memory

* Information about constants
« Some constants can be literal values in X86 instructions... $12
* Not all constants fit in instructions... “Enter your next move”
* Binary file must contain both the value and location of constants

* Information about global variables
* Where each global variable exists in memory
* What the initial value of the global variable is (if initialized)

* All the debug information created by -g

Binghamton CS-220

University Spring 2016

Object Code ELF format

* ELF -Acronym from: Executable and Linkable Format
* First defined in 1983 UNIX “System V”
 Used for many different architectures (very popular)

* [n 1996, chosen as standard for X86

* See
https://en.wikipedia.org/wiki/Executable and Linkable Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Binghamton CS-220

University Spring 2016

ELF File Format

Program Header Table
<
Lext
<
rodata
.data

Section Header Table (TOC on disk)

Binghamton CS-220

University Spring 2016

ELF Header

* “Magic Number” - First 4 bytes identify this as ELF (0x72 + ‘ELF’)

| x72 | x45 | x4C_| x46
r E L F

 Information about this file:
* 32/64 bit addresses, big/little endian
* Target operating system and architecture
* relocatable, executable, shared, or core

 Starting Load address
* Program Table Info (loc, size, #entries) for use after load
 Section Table Info (offset, size, #entries) File table of contents

Binghamton CS-220

University Spring 2016

"Reading” ELF files : objdump

 -f: Interpret ELF header

 -h : List section headers (table of contents)

* -d / -D : Disassemble x86 binary code (.text) segment
e -t/-T : Interpret symbol table

* -s: dump everything in hex
* -j<section> to restrict to a specific section

Binghamton CS-220

University Spring 2016

ELF Header Information

>objdump —f ttt

cmd: file format elf32-1386
architecture: 1386, flags 0x00000112:
EXEC_P, HAS_SYMS, D PAGED
start address 0x080483c0

Binghamton CS-220

University Spring 2016

Segments or Sections

* Need different sections for different types of data
* Each section has it’s own internal data format
* ELF header points to section table

* Section Table keeps “Section Header” for each segment

» What kind of section is this

* Section type/name
 Section Flags

* Starting location on disk (offset from beginning of the file)
* Size of section
* Location / Alighmentin memory for this section

Binghamton CS-220

University Spring 2016

objdump —h cmd (dump section headers)

Sections:

ldx Name Size VMA LMA File off Algn

0 .interp 00000013 08048134 08048134 00000134 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA

13 .text 00000290 080483cO 080483cO 000003cO 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE

14 fini 00000017 08048650 08048650 00000650 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

15 .rodata 00000021 08048668 08048668 00000668 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

Binghamton CS-220

University Spring 2016

Example extract of Section Table
Index|Name |Size |Addr _|FileOff. |Align [Flags

13 .text x0290 080483c0 x03c0 2**4 CODE,ALLOCREADONLY
14 fini

15 .rodata x0021 08048668 x0668 2**2 DATA,ALLOCREADONLY

24 .data x0120 08049880 x0880 2**5 DATA,ALLOC...
25 .bss x0120 080499a0 x09a0 2**2 ALLOC
26 .comment x0038 0 x09a0 2**0 ... READONLY ...

Binghamton

CS-220

University

text section — x86 binary Instructions

contents
80483c0
80483d0
80483e0
8048310
8048400
8048410
8048420

of section .text:
31ed5e89 e183e4f0
6808504 08515668
f£f49090 90909090
b8a39904 082da099
c3b80000 000085c0
c70424a0 990408ff
b8a09904 082da099

50545268
ac840408
90909090
04088318
74155589
d0c9c390
0408c1f8

Spring 2016

e0850408 1.A..... PTRh....
e8bfffff h....Qvh........
90909090,
067702f3 e w. .
e583ecl8 t.U.....
8d742600 ..$.......... t&.
0289c2cl e e e

Binghamton

University

text section — x86 binary Instructions

Contents of section .text:
80483c0 31ed5e89 e183e4f0 50545268 e0850408 1.A..... PTRh. ...

Disassembly of section .text:

080483c0 < _start>:

80483c0:
80483c2:
80483c3:
80483c5:
80483c8:
80483¢9:
80483ca:
80483cb:
80483d0:
80483d5:
80483d6:
80483d7:
80483dc:

31 ed

S5e

89 el

83 e4 0

50

54

52

68 e0 85 04 08
68 f0 85 04 08
51

56

68 ac 84 04 08
e8 bf ff ff ff

CS-220

Spring 2016

80483d0 68f08504 08515668 ac840408 e8bfffff h....Qvh

xor %ebp,%ebp
pop %esi

mov %esp,%ecx
and $Oxfffffff0,%esp
push %eax

push %esp

push %edx

push $0x80485e0
push $0x80485f0
push %ecx

push %esi

push $0x80484ac
call 80483a0 <__libc_start_main@plt>

Binghamton

CS-220

University

.data —initialized global/static data

contents
8049880
8049890
80498a0
80498b0
80498c0
80498d0

of section .data:

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
48656c6c 6f20576f 726c642e 2e2e2054
68697320 69732061 6e20696e 69746961
6c697a65 6420676c 6f62616Cc 20766172
6961626c 65207661 6c756500 00000000

Spring 2016

Hello world... T
his is an initia
11zed global var
1able value.....

Binghamton CS-220

University Spring 2016

bss—Size of uninitialized data

* Takes no space in object code!

* “bss” acronym for “Block Storage Start”
 or “Better Save Space”

Idx Name Size VMA LMA File off Algn
25 .bss 00000120 080499a0 080499a0 000009a0 2**5
ALLOC

Binghamton CS-220

University Spring 2016

rodata—Read only data (constants)

Contents of section .rodata:
8048668 03000000 01000200 6e756d20 61726773 num args
8048678 20697320 25640025 73202573 2025730a 1s %d.%s %s %s.
8048688 00

Binghamton CS-220

University Spring 2016

Symbol Table — Name Cross Reference

cmd: file format elf32-1386

SYMBOL TABLE:

08048134 1 d .interp 00000000 .interp

08048148 1 d .note.ABI-tag 00000000 .note.ABI-tag
08048668 ¢ O .rodata 00000004 _fp_hw

080499a0 ¢ *ABS* 00000000 __bss_start
080484ac ¢ F .text 000000d7 main

00000000 w *UND* 00000000 _Jv_RegistercClasses
0804858c ¢ F .text 00000051 utilFunc

00000000 F *UND* 00000000 sprintf@aGLIBC_2.0
080499a0 ¢ O .data 00000000 .hidden __TMC_END__
080499c0 ¢ O .bss 00000080 globalBuffer

Binghamton CS-220

University Spring 2016

Symbol Table — Name Cross Reference

Location FLAGS Section Length/Alignment Name

08048134 1 d .interp 00000000 .interp

08048148 1 d .note.ABI-tag 00000000 .note.ABI-tag
08048668 ¢ O .rodata 00000004 _fp_hw

080499a0 ¢ *ABS¥ 00000000 __bss_start
080484ac ¢ F .text 000000d7 main

00000000 w *UND* 00000000 _Jv_RegistercClasses
0804858c ¢ F .text 00000051 utilFunc

00000000 F *UND* 00000000 sprintf@AGLIBC_2.0
080499a0 ¢ O .data 00000000 .hidden __TMC_END__
080499c0 ¢ O .bss 00000080 globalBuffer

Binghamton

CS-220

University

Symbol Table Flags

* Col
 Col
 Col
 Col
* Col
 Col
 Col

Spring 2016

1: I=local, g=global, !'=both, u=unique global, blank=neither
2: w=weak, blank=strong

3: C=constructor, blank=ordinary symbol

4. W=warning, blank=normal

5: I=indirect ref, i=function for relocation, blank=normal

6: d=debugging symbol, D=dynamic symbol, blank=normal
7: F=function, f=file, O=object, blank=normal

Binghamton CS-220

University Spring 2016

Loading an ELF file into Memory

Operating System Reserved (kernel) Data

User Stack

%esp — l

Shared Library Region

1

User Heap (malloc)

Uninitialized globals (.bss)
Initialized globals (.data)

Yoelp Program Instructions (.text)

0x08048000 —— _
* Operating System Reserved Low Memory

Binghamton CS-220

University Spring 2016

Running a command

* Loading the command:
* Finding the binary file in the file system
* Parsing the command line into argc and argv
* Creating a new address space (and process ID) for the command
* Loading a binary file into memory (new address space)

* Executing the command:
* Push argc and argv on the bottom of the stack
* call main

